Multiple Vector Preserving Interpolation Mappings in Algebraic Multigrid
نویسندگان
چکیده
منابع مشابه
Algebraic multigrid support vector machines
The support vector machine is a flexible optimization-based technique widely used for classification problems. In practice, its training part becomes computationally expensive on large-scale data sets because of such reasons as the complexity and number of iterations in parameter fitting methods, underlying optimization solvers, and nonlinearity of kernels. We introduce a fast multilevel framew...
متن کاملDistance-two interpolation for parallel algebraic multigrid
Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large 3D problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those obtained by the parallel modified independent...
متن کاملAlgebraic Multigrid Based on Element Interpolation (AMGe)
We introduce AMGe, an algebraic multigrid method for solving the discrete equations that arise in Ritz-type finite element methods for partial differential equations. Assuming access to the element stiffness matrices, AMGe is based on the use of two local measures, which are derived from global measures that appear in existing multigrid theory. These new measures are used to determine local rep...
متن کاملOperator-based interpolation for bootstrap algebraic multigrid
Bootstrap Algebraic Multigrid (BAMG) is a multigrid-based solver for matrix equations of the form Ax = b. Its aim is to automatically determine the interpolation weights used in algebraic multigrid (AMG) by locally fitting a set of test vectors that have been relaxed as solutions to the corresponding homogeneous equation, Ax = 0, and are then possibly improved later using a multilevel eigensolv...
متن کاملA General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization
Algebraic multigrid methods solve sparse linear systems Ax = b by automatic construction of a multilevel hierarchy. This hierarchy is defined by grid transfer operators that must accurately capture algebraically smooth error relative to the relaxation method. We propose a methodology to improve grid transfers through energy minimization. The proposed strategy is applicable to Hermitian, non-Her...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications
سال: 2006
ISSN: 0895-4798,1095-7162
DOI: 10.1137/040618205